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Thm5: The following two statements are true. 

(1) If d  is a limiting direction of a feasible sequence at a feasible point x , then 
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 and LICQ condition is satisfied, then d  is 

a limiting direction for some feasible sequence at x . 

In summary, suppose LICQ holds, then 
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= the set of 

all limiting directions at x . 
Pf: 
(1) W.l.o.g. Let  kz  be such feasible sequence that 1  limiting direction d . Then 

by the definition of derivative, we have 
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(2) The proof of this part is quite tricky. First, since LICQ holds, we have a nm  

matrix 
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 of active constraint gradients with full row rank m . 



Let Z  be a matrix whose columns are a basis for the null space of A ; that is, 
  0,   AZZ mnn  and Z  has full column rank. 

Let  kt  be any sequence of positive scalars such 0lim 
 k

k
t . Define the 

parameterized system of equations nnR :  by 
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We claim that for each ktt  , the solutions kzz   of this system for small 

0t  give a feasible sequence  kz  that approaches x  and has a unique 

limiting direction that equals to d . 

Clearly,   00, xR , and  
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0,  which is nonsingular. 

Hence, by Implicit Function Theorem, we can locally parameterize z  by t  
around the point  0,x . Formally speaking,   n.b.d. V  of 0  and W  of x , 
and  WVCf p , 1  , such that    VtttfR  ,0,  and    xf 0 . Hence for 
all k  sufficiently large, we have Vtk  , and we define  kk tfz  . Now 
consider the sequence  kz . We first prove it is a feasible sequence and then 

prove it has a unique limiting direction that equals to d , and hence conclude the 
proof. 
Since   0 Adtzc kk , we have 
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Also, pCf   and    xf 0 , we have 
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Moreover,  c, kxzk   . 

Since if it is true for some 0kt , we have 
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nonsingular and 0d , we have a contradiction. 



From    b,a  and  c ,  kz  is a feasible sequence. 
It remains to show that d  is a limiting direction of  kz . Using the fact that 
  0, kk tzR  for all k  together with Taylor’s theorem, we find that 
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By dividing this expression by  xzk  and using nonsingularity, we obtain 
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limlim . Therefore,  kz  has a limiting direction d . (The 

uniqueness is clear, since every convergent subsequences of a convergent 
sequence converge to the same point.)  

□ 

 

Thm6: W.l.o.g. Let    mx 1A  ,       xcxcA m
T 1 , and x feasible point 
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Pf: 
   For any 1Fd  
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   We define the cone N  by 
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the condition is equivalent to   Nxf   . We first note that N  is closed (every 
accumulation points are still in N ). Then if   Nxf   , we are to prove 1Fd  

such that   0  dxf
T

. 

Since N  is closed, we have a Nsˆ  such that ŝ  is the closest point in N  to 
  xf . In other words, ŝ  is the only one minimizer ( N  is a convex set, check!) 

of the following convex problem, 
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Now, let s  be any other vector in N . Since N  is convex, we have by the 
minimizing property of ŝ  that 
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Let  0 ,      0ˆˆ  xfsss T , and by (a), we have 
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We are to prove 1Fd  , i.e. 
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Note that,       iNxcxc ii  allfor  ,   and , , and 
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