Theory of EM algorithm
Reference to the book “Pattern Recognition and Machine Learning” by C. M. Bishop.

In p(X|6)= L(q 6)+KL(g I| p) (1)
Where L Zq ( )6) and KL q|| p Zq ZlX 6)
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By examining KL(q | p) which is a Kullback-Leibler divergence of two distributions,
we find out L(g,8) is always a lower bound of our objective function In p(X|8)!

Specifically, KL(q | p)z 0 and equality occurs iff p =0, and we prove it as follows.

We first note that InXx is a strictly concave function.

ie. Za In(x <|n(2a,x,],for2a =1, and equality holds iff X, =1,Vi.So we

have KL(q| p):—Zq(z)InMZ—In(Z p(z|X,9)j=0 , equality hold iff

Z q(z)

p=q

No matter how we chose the distribution ¢(z), (1) always holds. So if we set
q(z)= p(z] X,0), then we have Inp(X|8)=L(q,0).
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L(q.0) Inp(X|0)

Let we have a previously estimated parameters 6,,,. From (1) we have

XZ|‘90|d) pZ|X‘90|d)

n = + = z np(’—+ - z n(—’
B )= (6,0 + KLl p) = (ehin P M) [ 3 L)

If we set q*(z)=p(z]|X,6,,). We have



In p(Xleold) q gold Zq %l_@%)

Setting 6,,,, = argmax L(q*,&). We have a new lower bound L(g*,8,,,)> L(q*,6,,)-
4

And we have the following relation:

In p(X|90|d) (q eold)<L(q new) (q new)+KL(q*” p) In p(X| new)

6., increases the objective function now! Again, setting q'= p(z|X,@,,,) and

new

maximizing L(q',H), we could have a sequence of non-decreasing objective function

values.

We conclude two main steps here:

(1) E-step: Setting q*(2)= p(z| X,8,,,) which induces to the lower bound

* 0) = Zq *(Z)InM having equality with objective function while

qa*(z)
0=0,, (e In p(X|‘90|d): L(q*!‘gold))-

(2) M-step:

O, = argmax L(g*,0)=argmax > q *(z)lnp(qX;—zzlf) =arg maqu 2)Inp(X,z|6)
0 0 "

An alternative interpretation of M-step is finding the parameters that maximize the

complete data log-likelihood under the expectation of missing variables.

Figure 8.12 lllustration of the E step of KL(q||p) =0
the EM algorithm. The ¢
distribution is set equal to
the posterior distribution for
the current parameter val-
ues 6", causing the lower
bound to move up to the —_————t -
same value as the log like-
lihood function, with the KL old old
divergence vanishing. L(q.077) Inp(X|6

—




Figure 9.13 iiustration of the M siep of the EM
algorithm.  The distribution (Z) KL(q|[p)
is held fixed and the lower bound
L(q.8) is maximized with respect I_
to the parameter vector € to give - ] el - - -
a revised value 8"“". Because the
KL divergence is nonnegative, this
causes the log likelihood Inp(X|@)
o increase by at least as much as
the lower bound does.
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Figure 9.14 The EM aigorithm invoives aiter-
nately computing a lower bound
on the log likelihood for the cur-
rent parameter values and then
maximizing this bound to obtain

the new parameter values. See o/ "\
the text for a full discussion. /_,-: : \
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Maximum a posterior could also be achieved by EM. To see this, we note that

Inp(@]X)=1Inp(X|8)+In p(@)-In p(X), so we have

In p(8]X)=1In p(X|8)+In p(8)-In p(X)

=L(q,6)+In p(¢)+ KL(qll p)~In p(X)

The only difference of MAP EM and ML EM is that the M-step is involved maximizing
L(q,8)+In p(8)

Also in practice, we usually have multiple observations X = {Xi...XN}. The EM
algorithm leads to maximize Inp(X|6)= Inl_[i p(x |0)= Zi In p(x, |9). So we

adopt EM for each observation In p(x | ), and the whole EM cycle is the same as

before except we have a summation for all observations from the outside.



