
Experimental Nonlinear Dynamics Supplemental Handout

The Power Spectral Density and the

Autocorrelation

The autocorrelation of a real, stationary signal x(t) is defined to by Rx(τ) =
E[x(t) x(t+ τ)]. The Fourier transform of Rx(τ) is called the Power Spectral
Density (PSD) Sx(f). Thus:

Sx(f) =

∫ ∞

−∞

Rx(τ) e−2πifτ dτ . (1)

The question is: what is the PSD? What does it mean? What is a “spectral
density,” and why is Sx called a power spectral density?

To answer this question, recall that

X(f) =

∫ ∞

−∞

x(t) e−2πift dt . (2)

To avoid convergence problems, we consider only a version of the signal
observed over a finite-time T ,1 xT = x(t)wT (t), where

wT =

{

1 for 0 ≤ |t| ≤ T
2

0 for |t| > T
2

.
(3)

Then xT has the Fourier transform

XT (f) =

∫ T

2

−T

2

xT (t) e−2πift dt

=

∫ T

2

−T

2

x(t) e−2πift dt

(4)

1This restriction is necessary because not all of our signals will be square integrable.
However, they will be mean square integrable, which is what we will take advantage of
here.
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and so

XT X∗
T =

[

∫ T

2

−T

2

x(t) e−2πift dt

][

∫ T

2

−T

2

x∗(s) e2πifs ds

]

=

∫ T

2

−T

2

∫ T

2

−T

2

x(t) x(s) e−2πif(t−s) dt ds ,

(5)

where the star denotes complex conjugation and for compactness the fre-
quency argument of XT has been suppressed. Taking the expectation of
both sides of Eq. (5)2

E[XT X∗
T ] =

∫ T

2

−T

2

∫ T

2

−T

2

E[x(t) x(s)] e−2πif(t−s) dt ds . (6)

Letting s = t + τ , one sees that E[x(t) x(s)] ≡ E[x(t) x(t + τ)] = Rx(τ), and
thus

E[XT X∗
T ] =

∫ T

2

−T

2

∫ T

2

−T

2

Rx(τ) e−2πifτ dt ds . (7)

To actually evaluate the above integral, the both variables of integration must
be changed. Let

τ = f(t, s) = s − t (as already defined for Eq. 7)

η = g(t, s) = s + t .
(8)

Then, the integral of Eq. (7) is transformed (except for the limits of integra-
tion) using the change of variables formula:3

∫ T

2

−T

2

∫ T

2

−T

2

Rx(τ) e−2πifτ dt ds =

∫ ∫

Rx(τ) e−2πifτ |J |−1dη dτ , (9)

2To understand what this means, remember that Eq. (5) holds for any x(t). So imagine
computing Eq. (6) for different x(t) obtained from different experiments on the same
system (each one of these is called a sample function). The expectation is over all possible
sample functions. Since the exponential kernel inside the integral of Eq. (6) is the same
for each sample function, it can be pulled outside of the expectation.

3This is a basic result from multivariable calculus. See, for example, I.S. Sokolnikoff and
R.M. Redheffer, Mathematics of Physics and Modern Engineering, 2nd edition, McGraw-
Hill, New York, 1966.
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Figure 1: The domain of integration (gray regions) for the Fourier transform
of the autocorrelation Eq. (7): (left) for the original variables, t and s; (right)
for the transformed variables, η and τ , obtained by the change of variables
Eq. (8). Notice that the square region on the left is not only rotated (and
flipped about the t axis), but its area is increased by a factor of |J | = 2. The
circled numbers show where the sides of the square on the left are mapped
by the change of variables. The lines into which the t and s axes are mapped
are also shown.

where |J | is the absolute value of the Jacobian for the change of variables
Eq. (8) given by

J =

∣

∣

∣

∣

∣

∂f
∂t

∂f
∂s

∂g
∂t

∂g
∂s

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

−1 1
1 1

∣

∣

∣

∣

= −2 . (10)

To determine the limits of integration needed for the right hand side of Eq.
(9), we need to refer to Fig. 1, in which the domain of integration is plotted in
both the original (t, s) variables and the transformed (τ, η) variables. Since
we wish to integrate on η first, we hold τ fixed. For τ > 0, a vertical cut
through the diamond-shaped region in Fig. 1 (right) shows that −T + τ ≤
η ≤ T − τ , whereas for τ < 0 one finds that −T − τ ≤ η ≤ T + τ . Putting
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this all together yields:

E[XT X∗
T ] =

1

2

∫ T

−T

∫ T−|τ |

−(T−|τ |)

Rx(τ) e−2πifτ dη dτ

= T

∫ T

−T

[

1 −
|τ |

T

]

Rx(τ) e−2πifτ dτ .

(11)

Finally, dividing both sides of Eq. (11) by T and taking the limit as T → ∞
gives

lim
T→∞

1

T
E[XT X∗

T ] = lim
T→∞

∫ T

−T

[

1 −
|τ |

T

]

Rx(τ) e−2πifτ dτ

= lim
T→∞

∫ T

−T

Rx(τ) e−2πifτ dτ

=

∫ ∞

−∞

Rx(τ) e−2πifτ dτ

= Sx(f) .

(12)

Thus, in summary, the above demonstrates that

Sx(f) = lim
T→∞

1

T
E[ |XT (f)|2 ] . (13)

Recalling that XT (f) has units SU/Hz (where SU stands for “signal units,”
i.e., whatever units the signal xT (t) has), it is clear that E[ |XT (f)|2 ] has
units (SU/Hz)2. However, 1/T has units of Hz, so that Eq. (13) shows that
the PSD has units of (SU2)/Hz. (Of course, the units can also be determined
by examining the definition of Eq. 1.)

Although it is not always literally true, in many cases the mean square of the
signal is proportional to the amount of power in the signal.4 The fact that

4This comes primarily from the fact that, in electrical circuits, the power can be written
in terms of the voltage as V 2/Z, or in terms of the current as I2Z, where Z is the circuit
impedance. Thus, for electrical signals, it precisely true that the mean square of the signal
will be proportional to the power. Be forewarned, however, that the mean square of the
scaled signal, expressed in terms of the actual measured variable (such as displacement or
acceleration), will not in general be equal to the average mechanical power in the structure
being measured.
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Sx is therefore interpreted has having units of “power” per unit frequency
explains the name Power Spectral Density.

Notice that power at a frequency f0 that does not repeatedly reappear in
xT (t) as T → ∞ will result in Sx(f0) → 0, because of the division by T in
Eq. (13). In fact, based on this idealized mathematical definition, any signal
of finite duration (or, more generally, any mean square integrable signal), will

have power spectrum identical to zero! In practice, however, we do not let T
extend much past the support [Tmin, Tmax] of xT (t) (Tmin/max is the minimum
(respectively, maximum) T for which xT (t) 6= 0). Since all signals that we
measure in the laboratory have the form y(t) = x(t) + n(t), where n(t) is
broadband noise, extending T to infinity for any signal with finite support
will end up giving Sx ≈ Sn.

We conclude by mentioning some important properties of Sx. First, since Sx

is an average of the magnitude squared of the Fourier transform, Sx(f) ∈ R

and Sx(f) ≥ 0 for all f . A simple change of variables in the definition Eq.
(1) shows that Sx(−f) = Sx(f).

Given the definition Eq. (1), we also have the dual relationship

Rx(τ) =

∫ ∞

−∞

Sx(f) e2πifτ df . (14)

Setting τ = 0 in the above yields

Rx(0) = E[ x(t)2] =

∫ ∞

−∞

Sx(f) df , (15)

which, for a mean zero signal gives

σ2
x =

∫ ∞

−∞

Sx(f) df . (16)

Finally, if we assume that x(t) is ergodic in the autocorrelation, that is, that

Rx(τ) = E[x(t) x(t + τ)] = lim
T→∞

1

T

∫ T

2

−T

2

x(t) x(t + τ) dt , (17)
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where the last equality holds for any sample function x(t), then Eq. (15) can
be rewritten as

lim
T→∞

1

T

∫ T

2

−T

2

x(t)2 dt =

∫ ∞

−∞

Sx(f) df . (18)

The above relationship is known as Parseval’s Identity.

This last identity makes it clear that, given any two frequencies f1 and f2,
the quantity

∫ f2

f1

Sx(f) df (19)

represents the portion of the average signal power contained in signal fre-
quencies between f1 and f2, and hence Sx is indeed a “spectral density.”
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