
1

Lecture 6: Block Adaptive Filters and
Frequency Domain Adaptive Filters

Overview

• Block Adaptive Filters

– Iterating LMS under the assumption of small variations in w(n)

– Approximating the gradient by time averages

– The structure of the Block adaptive filter

– Convergence properties

• Frequency Domain Adaptive Filters

– Frequency domain computation of linear convolution

– Frequency domain computation of linear correlation

– Fast LMS algorithm

– Improvement of convergence rate

– Unconstrained frequency domain adaptive filtering

– Self-orthogonalizing adaptive filters

Reference: Chapter 7 from Haykin’s book Adaptive Filter Theory 2002

Lecture 6 2

LMS algorithm

Given



• the (correlated) input signal samples {u(1), u(2), u(3), . . .},
generated randomely;

• the desired signal samples {d(1), d(2), d(3), . . .} correlated
with {u(1), u(2), u(3), . . .}

1 Initialize the algorithm with an arbitrary parameter vector w(0), for example w(0) = 0.
2 Iterate for n = 0, 1, 2, 3, . . . , nmax

2.0 Read /generate a new data pair, (u(n), d(n))
2.1 (Filter output) y(n) = w(n)Tu(n) =

∑M−1
i=0 wi(n)u(n− i)

2.2 (Output error) e(n) = d(n)− y(n)
2.3 (Parameter adaptation) w(n+ 1) = w(n) + µu(n)e(n)

2

Complexity of the algorithm: 2M + 1 multiplications and 2M additions per iteration

The error signal e(n) is computed using the parameters w(n), and we emphasize this by denoting ew(n)(n).

Lecture 6 3

Iterating LMS under the assumption of small variations in w(n)

The new parameters in LMS are evaluated at each time step

w(n+ L) = w(n+ L− 1) + µu(n+ L− 1)ew(n+L−1)(n+ L− 1)

= w(n+ L− 2) + µu(n+ L− 2)ew(n+L−2)(n+ L− 2) + µu(n+ L− 1)ew(n+L−1)(n+ L− 1)

= w(n) +
L−1∑
i=0

µu(n+ i)ew(n+i)(n+ i)

If the variations of parameters w(n+L− i) during the L steps of adaptation are small, w(n+L− i) ≈ w(n)

w(n+ L) ≈ w(n) +
L−1∑
i=0

µu(n+ i)ew(n)(n+ i)

Introduce a second time index k such that n = kL with a fixed integer L

w(kL+ L) = w((k + 1)L) = w(kL) + µ
L−1∑
i=0

u(n+ i)ew(n)(n+ i)

If the parameters are changed only at moments kL, we may change the notation w(k)← w(kL)

w(k + 1) = w(k) + µ
L−1∑
i=0

u(kL+ i)ew(k)(kL+ i)

The output of the filter is

y(kL+ i) = wT (k)u(kL+ i) i ∈ {0, . . . , L− 1}

Lecture 6 4

Block processing

Data used for modifying the partameters is grouped in blocks of length L.

The variables defined at time instants n = kL+ i:

• the input signal u(kL+ i)

• the output of the filter y(kL+ i) = wT (k)u(kL+ i)

• the error signal e(kL+ i)

The parameter vector, w(k), is defined only at time instants kL .

0 L 2L 3L 4L kL
0

1
2

L+1
L+2

L+3
2L

2L+13
L 2L+2

2L+3
3L

3L+1
3L+2

3L+3 4L+1
4L+2

4L+3 n

w(1) w(2) w(3) w(4) w(k)

u(2L+2)

Lecture 6 5

Block LMS algorithm

Given



• the (correlated) input signal samples {u(1), u(2), u(3), . . .},
randomly generated;

• the desired signal samples {d(1), d(2), d(3), . . .} correlated
with {u(1), u(2), u(3), . . .}

1 Initialize the algorithm with an arbitrary parameter vector w(0), for example w(0) = 0.
2 Iterate for k = 0, 1, 2, 3, . . . , kmax (k is the block index)
2.0 Initialize ϕ = 0
2.1 Iterate for i = 0, 1, 2, 3, . . . , (L− 1)

2.1.0 Read /generate a new data pair, (u(kL+ i), d(kL+ i))
2.1.1 (Filter output) y(kL+ i) = w(k)Tu(kL+ i) =

∑M−1
j=0 wj(k)u(kL+ i− j)

2.1.2 (Output error) e(kL+ i) = d(kL+ i)− y(kL+ i)
2.1.3 (Accumulate) ϕ← ϕ+ µe(kL+ i)u(kL+ i)

2.2 (Parameter adaptation) w(k + 1) = w(k) + ϕ
2

Complexity of the algorithm: 2M + 1 multiplications and 2M + M
L

additions per iteration

Lecture 6 6

Lecture 6 7

Another way to introduce Block LMS algorithm:

approximating the gradient by time averages

The criterion

J = Ee2(n) = E(d(n)− w(n)Tu(n))2

has the gradient with respect to the parameter vector w(n)

∇w(n)J = −2Ee(n)u(n)

The adaptation of parameters in the Block LMS algorithm is

w(k + 1) = w(k) + µ
L−1∑
i=0

u(kL+ i)ew(k)(kL+ i)

and denoting µB = µL, the adaptation can be rewritten

w(k + 1) = w(k) + µB

 1
L

L−1∑
i=0

u(kL+ i)ew(k)(kL+ i)

 = w(k)− µB
1

2
∇̂w(k)J

where we denoted by

∇̂w(k)J = − 1

L

L−1∑
i=0

u(kL+ i)ew(k)(kL+ i)

which shows that expectation in the expression of the gradient is replaced by time average.

Lecture 6 8

Convergence properties of the Block LMS algorithm:

• Convergence of average parameter vector Ew(n)

We will subtract the vector wo from the adaptation equation

w(k + 1) = w(k) + µ
1

L

L−1∑
i=0

u(kL+ i)ew(k)(kL+ i) = w(k) + µ
1

L

L−1∑
i=0

u(kL+ i)(d(kL+ i)− u(kL+ i)Tw(k))

and we will denote ε(k) = w(k)− wo

w(k + 1)− wo = w(k)− wo + µ
1

L

L−1∑
i=0

u(kL+ i)(d(kL+ i)− u(kL+ i)Tw(k))

ε(k + 1) = ε(k) + µ
1

L

L−1∑
i=0

u(kL+ i)(d(kL+ i)− u(kL+ i)Two) +

+µ
1

L

L−1∑
i=0

(u(kL+ i)u(kL+ i)Two − u(kL+ i)u(kL+ i)Tw(k))

= ε(k) + µ
1

L

L−1∑
i=0

u(kL+ i)eo(kL+ i)− µ
1

L

L−1∑
i=0

u(kL+ i)u(kL+ i)Tε(k)

= (I − µ
1

L

L−1∑
i=0

u(kL+ i)u(kL+ i)T)ε(k) + µ
1

L

L−1∑
i=0

u(nkL+ i)eo(kL+ i)

Taking the expectation of ε(k + 1) using the last equality we obtain

Eε(k + 1) = E(I − µ
1

L

L−1∑
i=0

u(kL+ i)u(kL+ i)T)ε(k) + Eµ
1

L

L−1∑
i=0

u(nkL+ i)eo(kL+ i)

Lecture 6 9

and now using the statistical independence of u(n) and w(n), which implies the statistical independence
of u(n) and ε(n),

Eε(k + 1) = (I − µE[
1

L

L−1∑
i=0

u(kL+ i)u(kL+ i)T])E[ε(k)] + µE[
1

L

L−1∑
i=0

u(nkL+ i)eo(kL+ i)]

Using the principle of orthogonality which states that E[u(kL + i)eo(kL + i)] = 0, the last equation
becomes

E[ε(k + 1)] = (I − µE[u(kL+ i)u(kL+ i)T])E[ε(k)] = (I − µR)E[ε(k)]

Reminding the equation

c(n+ 1) = (I − µR)c(n) (1)

which was used in the analysis of SD algorithm stability, and identifying now c(n) with Eε(n), we have
the following result:

The mean Eε(k) converges to zero, and consequently Ew(k)
converges to wo

iff

0 < µ <
2

λmax
(STABILITY CONDITION !) where λmax is the

largest eigenvalue of the matrix R = E[u(n)u(n)T].

Stated in words, block LMS algorithm is convergent in mean, iff the stability condition is met.

Lecture 6 10

Study using small-step assumption

• The average time constant is

τmse,av =
L

2µBλav
(2)

where λav is the average of the M eigenvalues of the correlation matrix

R = E[u(n)uT (n)] (3)

To compare, the average time constant for standard LMS is

τmse,av =
1

2µλav
(4)

therefore, the transients have the same convergence speed for block and standard LMS.

• Misadjustment The misadjustment

M ∆=
J(∞)− Jmin

Jmin
=

µB

2L
tr[R] (5)

(where Jmin is the MSE of the optimal Wiener filter) is the same as for the standard LMS algorithm.

• Choice of block size

In most application the block size is selected to be equal to the filter length L = M . It is a tradeoff of
the following drawbacks:

– For L > M the gradient is estimated using more data than the filter itself.

– For L < M the data in the current block is not enough to feed the whole tap vector, and consequently
some weights are not used.

Lecture 6 11

Frequency Domain Adaptive Filters

• FFT domain computation of the linear convolution with Overlap-Save method

We want to compute simultaneously all the outputs of the block filter, corresponding to one block of
data. Note that the filter parameters are kept constant during a block processing.

y(kM +m) =
M−1∑
i=0

wiu(kM +m− i)

y(kM) =
M−1∑
i=0

wiu(kM − i) = w0u(kM) + w1u(kM − 1) + . . .+ wM−1u(kM −M + 1)

y(kM + 1) =
M−1∑
i=0

wiu(kM − i+ 1) = w0u(kM + 1) + w1u(kM) + . . .+ wM−1u(kM −M + 2)

y(kM + 2) =
M−1∑
i=0

wiu(kM − i+ 2) = w0u(kM + 2) + w1u(kM + 1) + . . .+ wM−1u(kM −M + 3)

. . .

y(kM + (M − 1)) =
M−1∑
i=0

wiu(kM − i+ (M − 1)) = w0u(kM + (M − 1)) + w1u(kM + (M − 2)) + . . .+ wM−1u(kM)

Let us consider two FFT transformed sequences:

– the M -length weight vector is padded at the end with M zeros and then a 2M -length FFT is
computed

W = FFT

 w
0



Lecture 6 12

or componentwise:

Wi =
M−1∑
n=0

w(n)e−j
2πin
2M

– the FFT transform of the vector u = [u(kM−M) u(kM−M+1) . . . u(kM) u(kM+1) . . . u(kM+
M − 1)] is then computed

Ui =
2M−1∑
ℓ=0

u(kM −M + ℓ)e−j
2πiℓ
2M

We try to rewrite in a different form the product of the terms WiUi for i = 0, . . . , 2M − 1:

WiUi =
M−1∑
n=0

w(n)e−j
2πin
2M

2M−1∑
ℓ=0

u(kM −M + ℓ)e−j
2πiℓ
2M =

M−1∑
n=0

2M−1∑
ℓ=0

w(n)u(kM −M + ℓ)e−j
2πi(n+ℓ)

2M

= e−j
2πi(M)
2M

M−1∑
n=0

w(n)u(kM − n) + e−j
2πi(M+1)

2M

M−1∑
n=0

w(n)u(kM − n+ 1) + . . .+

+e−j
2πi(M+M−1)

2M

M−1∑
n=0

w(n)u(kM − n+M − 1) +
(
e−j

2πi(0)
2M C0 + . . .+ e−j

2πi(M−1)
2M CM−1

)

= e−j
2πi(M)
2M y(kM) + e−j

2πi(M+1)
2M y(kM + 1) + . . .+ e−j

2πi(2M−1)
2M y(kM +M − 1) +

+
(
e−j

2πi(0)
2M C0 + . . .+ e−j

2πi(M−1)
2M CM−1

)
= the ith element of FFT

 C
y(kM)


Denoting y = [y(kM) y(kM + 1) . . . y(kM +M − 1)]T , we obtain finally the identity: C

y

 = IFFT

FFT

 w
0

× FFT
([

u
])

where by × we denoted the element-wise product of the vectors.

Lecture 6 13

• FFT domain computation of the linear correlation

We want to compute simultaneously all entries in the correlation vector needed in the adaptation equation

ϕ =
M−1∑
i=0

e(kM + i)u(kM + i) =
M−1∑
i=0



u(kM + i)
u(kM + i− 1)
.
.
u(kM + i− (M − 1))


e(kM + i)

ϕℓ =
M−1∑
i=0

e(kM + i)u(kM + i− ℓ)

ϕ0 =
M−1∑
i=0

e(kM + i)u(kM + i) = e(kM)u(kM) + . . .+ e(kM +M − 1)u(kM +M − 1)

. . .

ϕM−1 =
M−1∑
i=0

e(kM + i)u(kM + i− (M − 1))

Let us consider the following FFT transformed sequence:

– the M -length error vector e = [e(kM) e(kM+1) . . . e(kM+(M−1))]T is padded at the beginning
with M zeros and then a 2M -length FFT is computed

E = FFT

 0
e



Lecture 6 14

or componentwise:

Ei =
M−1∑
n=0

e(kM + n)e−j
2πi(n+M)

2M Ui =
2M−1∑
ℓ=0

u(kM −M + ℓ)e−j
2πiℓ
2M

We try to rewrite in a different form the product of the terms EiU i for i = 0, . . . , 2M − 1:

EiU i =
M−1∑
n=0

e(kM + n)e−j
2πi(n+M)

2M

2M−1∑
ℓ=0

u(kM −M + ℓ)ej
2πiℓ
2M =

M−1∑
n=0

2M−1∑
ℓ=0

e(kM + n)u(kM −M + ℓ)e−j
2πi(n+M−ℓ)

2M

= e−j
2πi(M−1)

2M

M−1∑
n=0

e(kM + n)u(kM + n− (M − 1)) + e−j
2πi(M−2)

2M

M−1∑
n=0

e(kM + n)u(kM + n− (M − 2)) + . . .+

+e−j
2πi(0)
2M

M−1∑
n=0

e(kM + n)u(kM + n) +
(
e−j

2πi(M)
2M DM + . . .+ e−j

2πi(2M−1)
2M D2M−1

)
= e−j

2πi(0)
2M ϕ0 + e−j

2πi(1)
2M ϕ1 + . . .+ e−j

2πi(M−1)
2M ϕM−1 +

(
e−j

2πi(M)
2M DM + . . .+ e−j

2πi(2M−1)
2M D2M−1

)
= the ith element of FFT

[
ϕ
D

]

We obtained finally the identities:

FFT

 ϕ
D

 = FFT

 0
e

× FFT
([

u
])

and

 ϕ
D

 = IFFT

FFT

 0
e

× FFT
([

u
])

where by × we denoted the element-wise product of the vectors.

Lecture 6 15

The adaptation equation

w(k + 1) = w(k) + µ
M−1∑
i=0

u(kM + i)ew(k)(kM + i) = w(k) + µbϕ

Due to linearity of FFT, we can write

FFT

 w(k + 1)
0

 = FFT

 w(k)
0

 + µFFT

 ϕ
0


The fast LMS algorithm (Frequency Domain Adaptive Filter=FDAF

For each block of M data samples do the following:

1 Compute the output of the filter for the block kM, . . . , kM +M − 1 C
y

 = IFFT

FFT

 w(k)
0

× FFT
([

u
])

2 Compute the correlation vector ϕ
D

 = IFFT

FFT

 0
e

× FFT
([

u
])

3 Update the parameters of the filter

FFT

 w(k + 1)
0

 = FFT

 w(k)
0

 + µFFT

 ϕ
0



Lecture 6 16

Lecture 6 17

Lecture 6 18

Computational Complexity of the fast LMS algorithm

1 Classical LMS requires 2M multiplications per sample, so for a block of M samples there is a neeed
of 2M 2 multiplications.

2 In the fast LMS algorithm there are 5 FFT transforms , requiring approximately 2M log(2M) real
multiplications each, and also other 16M operations (when updating the parameters, computing the
errors, element-wise multiplications of FFT transformed vectors) so the total is

10M log(2M) + 16M = 10M log(M) + 26M

3 The complexity ratio for the fast LMS to standard LMS is

Complexity ratio =
2M 2

10M log(M) + 26M
=

M

5 log2(M) + 13

For M = 16 Complexity ratio=0.48 Classical LMS is superior

For M = 32 Complexity ratio=0.84 Classical LMS is superior

For M = 64 Complexity ratio=1.49 Frequency domain LMS is superior

For M = 1024 Complexity ratio=16 Frequency domain LMS is 16 times faster than classical LMS

For M = 2048 Complexity ratio=30 Frequency domain LMS is 30 times faster than classical LMS

Lecture 6 19

Convergence rate improvement

• In fast LMS, since the weights are adapted in the frequency domain, they can be associated to one mode
of the adaptive process. The individual convergence rate may be varied in a straightforward manner.
This is different of the mixture of modes type of adaptation, which was found in LMS.

• The convergence time for the i’th mode is inversely proportional to µλi, where λi is the eigenvalue of
the correlation matrix R of the input vector, and λi is a measure of the average input power in the i’th
frequency bin.

• All the modes will converge at the same rate by assigning to each weight a different step-size

µi =
α

Pi

where Pi is an estimate of the average power in the i’th bin, and α controls the overall time constant of
the convergence process

τ =
2M

α
samples

If the environment is non-stationary, the estimation of Pi can be carried out by

Pi(k) = γPi(k − 1) + (1− γ)|Ui(k)|2, i = 0, 1, . . . , 2M − 1

where γ is a forgetting factor

Lecture 6 20

Unconstrained frequency-domain adaptive filtering

– In the computation of the gradient, some constraints are imposed in order to achieve a linear corre-
lation, (as opposed to a a circular correlation). These constraints are:

∗ Discard the last M elements of the inverse FFT of UH(k)E(k)

∗ Replace the elements discarded by an appended block of zeros.

– If from the flow-graph of the LMS algorithm the gradient constraints are removed (a FFT block, a
IFFT block, the delete block, and the append block), the algorithm is no longer equivalent to block
LMS block

W (k + 1) = W (k) + µUH(k)E(k) (6)

– The resulting algorithm has a lower complexity (only three FFTs are required).

– The drawbacks:

∗ when the number of processed blocks increases, the weight vector no longer converges to the
Wiener solution.

∗ the steady state error of the unconstrained algorithm is increased compared to the fast LMS
algorithm.

Lecture 6 21

Self-orthogonalizing adaptive filters

The self-orthogonizing adaptive filter was introduced to guarantee a constant convergence rate, not
dependent on the input statistics.

– The updating equation is

w(n+ 1) = w(n) + αR−1u(n)e(n)

– the step size must satisfy 0 < α < 1 and it was recommended to be selected as

α =
1

2M

– Example: for white Gaussian input, with variance σ2,

R = σ2I

and the adaptation becomes the one from the standard LMS algorithm:

w(n+ 1) = w(n) +
1

2Mσ2
u(n)e(n)

– From the previous example, a two stage procedure can be inferred:

∗ Step I: Transform the input vector u(n) into a corresponding vector of uncorrelated variables.

∗ Step II: use the transformed vector into an LMS algorithm

– Consider first as uncorrelating transformation the Karhunen-Loeve transform:

νi(n) = qT
i
u(n), , i = 0, . . . ,M − 1

Lecture 6 22

where q
i
is the eigenvector associated with the i’th eigenvalue λi of the correlation matrix R of the input

vector u(n).

• The individual outputs of the KLT are uncorrelated:

Eνi(n)νj(n) =

 λi, j = i
0, j ̸= i

• The adaptation equation (Step II) becomes

w(n+ 1) = w(n) + αΛ−1ν(n)e(n)

or written element-wise, for i = 0, 1, . . . ,M − 1:

wi(n+ 1) = wi(n) +
α

λi
νi(n)e(n)

• Replacing the optimal KLT with the (sub)optimal DCT (discrete cosine transform) one obtains the
DCT-LMS algorithm.

• The DCT is performed at each sample (the algorithm is no longer equivalent to a block LMS. Advantage:
better convergence. Disadvantage: not so computationally efficient.

