Lecture 6: Block Adaptive Filters and
Frequency Domain Adaptive Filters

Overview

e Block Adaptive Filters

— Iterating LMS under the assumption of small variations in w(n)
— Approximating the gradient by time averages
— The structure of the Block adaptive filter

— Convergence properties
e Frequency Domain Adaptive Filters

— Frequency domain computation of linear convolution
— Frequency domain computation of linear correlation
— Fast LMS algorithm

— Improvement of convergence rate

— Unconstrained frequency domain adaptive filtering

— Self-orthogonalizing adaptive filters

Reference: Chapter 7 from Haykin’s book Adaptive Filter Theory 2002
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LMS algorithm

e the (correlated) input signal samples {u(1),u(2),u(3),...},
generated randomely;

Given
e the desired signal samples {d(1),d(2),d(3),...} correlated

with {u(1),u(2),u(3),...}

1 Initialize the algorithm with an arbitrary parameter vector w(0), for example w(0) = 0.
2 Iterate for n =10,1,2,3,..., Nz

2.0 Read /generate a new data pair, (u(n),d(n))
2.1 (Filter output) y(n) = wn)Tu(n) = M5 wi(n)u(n — i)
2.2 (Output error) e(n) =d(n) —y(n)

D2.3 (Parameter adaptation) w(n+1) =w(n) + pu(n)e(n)

Complexity of the algorithm: 2M + 1 multiplications and 2M additions per iteration

The error signal e(n) is computed using the parameters w(n), and we emphasize this by denoting e, ,)(n).
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Iterating LMS under the assumption of small variations in w(n)
The new parameters in LMS are evaluated at each time step

wn+L) = wn+L—1)+pun+L—1eymnir-1y(n+ L —1)
= wn+L—-2)+pun+L—2)eymnir-2n+L—2)+pun+L—1eypuir-1)(n+L—1)

L-1

(n) + ;0 pu(n + i)eymyy(n + 1)

I
=

If the variations of parameters w(n + L — i) during the L steps of adaptation are small, w(n + L — i) ~ w(n)
wln+ L) ~ o) + 5 -+ dey(n -+
Introduce a second time index k such that n = kL with a fixed integer L
wkL+ L) = w((k+1)L) =w(kL) + uLg_olu(n + )€y (n + )

If the parameters are changed only at moments kL, we may change the notation w(k) < w(kL)

wk+1) =w(k)+ uLZ:u(kL + i) ewr) (kL 4 1)

The output of the filter is

y(kL +i) = w’ (k)u(kL + 1) ie{0,...,L—1}
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Block processing
Data used for modifying the partameters is grouped in blocks of length L.

The variables defined at time instants n = kL + :

e the input signal u(kL + 1)
e the output of the filter y(kL + i) = w? (k)u(kL + i)

e the error signal e(kL + 1)

The parameter vector, w(k), is defined only at time instants kL .
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Block LMS algorithm

Given

2.0
2.1

2.2
O

Comp

e the (correlated) input signal samples {u(1),u(2),u(3),...},
randomly generated;

e the desired signal samples {d(1),d(2),d(3),...} correlated
with {u(1),u(2),u(3),...}

1 Initialize the algorithm with an arbitrary parameter vector w(0), for example w(0) = 0.
2 Iterate for k£ =0,1,2,3, ..., kyae (K is the block index)

Initialize ¢ =0
Iterate for i =0,1,2,3,...,(L —1)
2.1.0 Read /generate a new data pair, (uw(kL +1),d(kL + 1))

2.1.1 (Filter output) y(kL +1) = w(k)Tu(kL + i) = X055 w(k)u(kL + i — j)
2.1.2  (Output error) e(kL+1) =d(kL +1) —y(kL + 1)
2.1.3 (Accumulate) ¢ < ¢+ pe(kL +i)u(kL + 1)

(Parameter adaptation) w(k + 1) = w(k) + ¢

lexity of the algorithm: 2M + 1 multiplications and 2M + % additions per iteration
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Another way to introduce Block LMS algorithm:
approximating the gradient by time averages

The criterion
J = Ee*(n) = E(d(n) — w(n)" u(n))*
has the gradient with respect to the parameter vector w(n)
Vumd = —2Ee(n)u(n)
The adaptation of parameters in the Block LMS algorithm is

w(k + 1) = M(k) + LLLZ_:_:U(kL + Z')ew(k)(k‘[/ + i)

and denoting up = pulL, the adaptation can be rewritten

1 L—-1 ) ) 1 N
M(k + 1) = M(kﬁ) + up 7 Z @(k‘L + Z)Bw(/{)(l{:[] + Z) = M(k) — ,UB§vw(k;)J
i=0
where we denoted by
. 1 L-1
Vi = =7 2 ulkL +i)ew (kL +1)
i=0

which shows that expectation in the expression of the gradient is replaced by time average.
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Convergence properties of the Block LMS algorithm:

e Convergence of average parameter vector Fw(n)

We will subtract the vector w, from the adaptation equation

wk+1) = w(k) + u; Jgu(m +i)ey (kL + i) = w(k) + ui Lg:u(kL + i) (d(kL + i) — w(kL + i) w(k))

and we will denote (k) = w(k) — w,

wk+1) —w, = w(k) —w, + uz ]i:u(kL + i) (d(kL + i) — u(kL + i) w(k))

ck+1) = 2(k) + g 3 u(hL -+ i)(d(kL + 1) — u(kL +3)7w,) +
=0
g 5 (R (R + 9, — u(bL -+ (kL + ) ()
=e(k) + ui jg:lu(kL +i)eo(kL +1i) — ,ui le_:lu(k:L + Du(kL +i)Te(k)
1=0 1=0

= (I p7 X (kL + u(kL + ) )elk) + 7 S u(nkL + ie,(KL + )
1=0 =0

Taking the expectation of €(k + 1) using the last equality we obtain

1 L—1 1 I—1
FEe(k+1) = E(I — 3 S wu(kL + d)u(kL +0)")e(k) + Euz > u(nkL +i)e (kL + 1)
i=0 i=0
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and now using the statistical independence of u(n) and w(n), which implies the statistical independence
of u(n) and g(n),

Ee(k+1) = (I- ME[E Lg:u(m = ulkL + )T Ele(k)] + uE[i gu(nkL +i)eo(kL + )]

Using the principle of orthogonality which states that Elu(kL + i)e,(kL + i)] = 0, the last equation
becomes

Ele(k+1)] = (I —pElu(kL + )u(kL +i)"]))Ele(k)] = (I — pR)Eg(k)]
Reminding the equation
c(n+1) = (I — pR)c(n) (1)

which was used in the analysis of SD algorithm stability, and identifying now c(n) with Ee(n), we have
the following result:

The mean Fe(k) converges to zero, and consequently Fw(k)
converges to w,

ifft
(STABILITYCONDITION!) where A, is the

0<pu<
largest eigenvalue of the matrix R = Efu(n)u(n)T].

Stated in words, block LMS algorithm is convergent in mean, iff the stability condition is met.
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Study using small-step assumption

e The average time constant is

L
mse,av — 5 N\ 2
Tmse. QIU/B)\CLU ( )
where A\, is the average of the M eigenvalues of the correlation matrix
R = Elu(n)u (n)) (3)
To compare, the average time constant for standard LMS is
1
mse,av — 5 N\ 4
Tmse.av = 55— (4)

therefore, the transients have the same convergence speed for block and standard LMS.

e Misadjustment The misadjustment

A J(OO) — Jmin __ MB
(where J;, is the MSE of the optimal Wiener filter) is the same as for the standard LMS algorithm.
e Choice of block size

In most application the block size is selected to be equal to the filter length L = M. It is a tradeoff of
the following drawbacks:

— For L > M the gradient is estimated using more data than the filter itself.

— For L < M the data in the current block is not enough to feed the whole tap vector, and consequently
some weights are not used.
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Frequency Domain Adaptive Filters

e FF'T domain computation of the linear convolution with Ouverlap-Save method

We want to compute simultaneously all the outputs of the block filter, corresponding to one block of
data. Note that the filter parameters are kept constant during a block processing.

M-1
y(kM +m) = > wu(kM +m — i)

1=0

M—1
y(kM) = wiu(kM — i) = wou(kM) + wiw(kM — 1) + ... + wyqu(kM — M + 1)

i=0
M—1

y(kM +1) = wiu(kM — i+ 1) = wou(kM 4+ 1) + wyu(kM) + ... + wyqu(kM — M + 2)
i=0
M—1

y(kM +2) = wiu(EM — i+ 2) = wou(kM + 2) + wyuw(kM + 1) + ... + wpy—qu(kM — M + 3)
i=0
M—1

y(kM + (M —1)) = wiu(kM —i+ (M — 1)) = wou(kM + (M — 1)) + wyu(kM + (M — 2)) + ... + wy_qu(kM)

=]

1=

Let us consider two FFT transformed sequences:

— the M-length weight vector is padded at the end with M zeros and then a 2M-length FE'T is
computed

W:FFT[%}]



Lecture 6 12

or componentwise:
1

M- ,
Wi= > w(n)e™’ =
n=0
— the FFT transform of the vector u = [u(kM—M) uw(kM—M+1) ... w(kM) uw(kM+1) ... uw(kM+
M —1)] is then computed

2M—1 9mif
U= Y ulkM — M + ¢)e %1
/=0

We try to rewrite in a different form the product of the terms W,U; for ¢ =0,...,2M — 1:

M—1 amin 2m[ M—-12M-1 27rz(n+€)
Wil = X wloe Y ubM = Mo+ 0T = 5 (kM - M+ e T
n=0 n=0 (=0
2mi M-1 - 211 1 M-1
— IEE Y wn)u(kM —n) + e TTH Y wn)u(EM —n 1) + ...+
n=0 n=0
27 1 M-1 . 273 (0 27rz 1)
e TS wn)u(kM — 0+ M~ 1)+ (e 7B Gy e T Oy
n=0
= eI (RM) 4 e TRy (kM 1) e Sy (BM M — 1) +
]271'1 2m(M D . . Q
—I—(e o Cy+...+e 2 Oy 1) — the ith element of FFT[y(kM) ]
Denoting y = [y(kM) y(kM +1) ... y(kM + M —1)]", we obtain finally the identity:

O\ =rrrr(rer (|5 ]) <rrr(a))

where by X we denoted the element-wise product of the vectors.
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e FFT domain computation of the linear correlation

We want to compute simultaneously all entries in the correlation vector needed in the adaptation equation

[ u(kM 4+ 1)
M—1 M—1 u(kM + 17— 1)
¢o= > elkM+i)u(kM +1i)= > |. e(kM + 1)
1=0 i=0
| u(bkM +i— (M —1)) |
Gr = ]\gl e(kM + i)u(kM +1i — 0)
by = Agl e(kM +i)u(kM +i) = e(kM)u(kM) + ...+ e(kM + M — Du(kM + M — 1)

St = ge(lﬂMJri)u(k‘M%—i—(M—l))

Let us consider the following FFT transformed sequence:

— the M-length error vector e = [e(kM) e(kM+1) ... e(kM+ (M —1))]T is padded at the beginning
with M zeros and then a 2M-length FFT is computed

E:FFTB]
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or componentwise:

M-1 o . 2mi(n+M) 2M—-1 _s2mid
E;= > e(kM +n)e/ 2m U= > ulkM—M+/{e J2n
n=0 =0

We try to rewrite in a different form the product of the terms E;U; for i =0,...,2M — 1:

M-1 2M—1 M-12M-1

_|_

EU, = Y e(kM+n)e ™5 S wkM — M+ 05 = 3 Y e(kM + n)u(kM — M + 0)e™ " 55—
n=0 =0 n=0 ¢=0
mi(M—1) M- omi(M—2) M-1
= = Z (kM +n)u(kM +n— (M —1))+e 7720 > e(kM +n)u(kM +n— (M —2))+...
— n=0
- 27i(0) M-1 27i(M) 2mi(2M —1)
+e 77 Y e(kM + n)u(kM + n) + (6 T Dy A+ .. e DQM_l)
n=0
_ .2mi(0) _ _2mi(M—1) _2mi(M) _ 2m(2M 1)
= J=onr ¢0+632M o1+ .. —G—CJ oM ¢M_1—|—<€J 2 Dy + .. _|_63 Doy 1)
= the i¢th element of FFF'T [ % ]
We obtained finally the identities:
rrr| 2| = Frr(|° x FFT ([u]) and o\ _ rppr (FET( |1 x FFT ([ u])
D e B D e B

where by X we denoted the element-wise product of the vectors.

14
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The adaptation equation

M—1
w(k+1) =wk) +p Y wkM +i)eymw) (M +1i) = w(k) + pbe
=0
Due to linearity of FFT, we can write

FFT [ w(k0+ D ] — FFT [ wék) } + uFFT [ ?]

The fast LMS algorithm (Frequency Domain Adaptive Filter=FDAF
For each block of M data samples do the following:

1 Compute the output of the filter for the block kM, ..., kM + M — 1

[2] = [FFT (FFT ([ wék) ) x FFT ([ u ]))
2 Compute the correlation vector
[g] = IFFT (FFT([S ) X FFT([uD>

3 Update the parameters of the filter

w(k+1)
0

FFT [ ] — FFT [wék) ] + uFFT [

IS -

|

15
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E&?uence 1 X (k) Y(K) ?(:;pul
Save
Ly g i > o oo ——
old new | - | Y |
| x | x | 4
FFT discard
Two Blocks f
A block contains
N data samples %g?oegdlock | o]
w
Each FFT has
2N points i I
“Sequence” 2

Fig. 4. Overlap-Save Sectioning. The overlap-save sectioning method performs a linear convolution between a finite length se-
quence and an infinite-length sequence by appropriately partitioning the data. The finite-length “sequence” w(n} (in our case, the
adaptive weights) has N elements; after appending N zeros, a 2N-point FFT is computed. For the infinite-length input sequence x
(n), the most recent N data samples are concatenated with the previous block of N samples; a 2N-point DFT of this extended
data vector is then computed. The product of the transformed sequences (i.e.. Y(k) =X (i) W (k)) is processed by a 2N-point in-

verse FFT (IFFT), yielding a block of output sumples. The first N points of this output _frame are discarded, while the last N points
are the desired output samples of a linear convolution.

16
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Fige. 5. Overlap-Save FDAF. This FOAF is based on the overlap-save sectioning procedure for implementing linear convolufions
aned linear correlations. The gradient constraint ensures that the IDFT of the 2N frequency-domain weights yields only N non-
zero tme-doemain weights, Because the DFTs are computed only once _for each block of data. there is an end-to-end delay of N
sarmples.
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Computational Complexity of the fast LMS algorithm

1 Classical LMS requires 2M multiplications per sample, so for a block of M samples there is a neeed
of 2M? multiplications.

2 In the fast LMS algorithm there are 5 FFT transforms , requiring approximately 2M log(2M) real
multiplications each, and also other 16M operations (when updating the parameters, computing the
errors, element-wise multiplications of FFT transformed vectors) so the total is

10M log(2M) + 16M = 10M log(M) + 26M

3 The complexity ratio for the fast LMS to standard LMS is

2M? B M
10M log(M) + 26M ~— 5logy(M) + 13

Complexity ratio =

For M = 16 Complexity ratio=0.48 Classical LMS is superior

For M = 32 Complexity ratio=0.84 Classical LMS is superior

For M = 64 Complexity ratio=1.49 Frequency domain LMS is superior

For M = 1024 Complexity ratio=16 Frequency domain LMS is 16 times faster than classical LMS
For M = 2048 Complexity ratio=30 Frequency domain LMS is 30 times faster than classical LMS
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Convergence rate improvement

e In fast LMS, since the weights are adapted in the frequency domain, they can be associated to one mode
of the adaptive process. The individual convergence rate may be varied in a straightforward manner.
This is different of the mixture of modes type of adaptation, which was found in LMS.

e The convergence time for the i’th mode is inversely proportional to puA;, where ); is the eigenvalue of
the correlation matrix R of the input vector, and ); is a measure of the average input power in the ¢’th
frequency bin.

e All the modes will converge at the same rate by assigning to each weight a different step-size

Hi=p

where P; is an estimate of the average power in the ¢’th bin, and « controls the overall time constant of
the convergence process

2M
T = ——samples
o

If the environment is non-stationary, the estimation of P; can be carried out by
Bi(k) =yP(k=1)+ (1 =)Ui(k)]?,  i=0,1,....,2M -1

where ~ is a forgetting factor
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Unconstrained frequency-domain adaptive filtering

— In the computation of the gradient, some constraints are imposed in order to achieve a linear corre-
lation, (as opposed to a a circular correlation). These constraints are:

% Discard the last M elements of the inverse FFT of U (k)E(k)
* Replace the elements discarded by an appended block of zeros.

— If from the flow-graph of the LMS algorithm the gradient constraints are removed (a FFT block, a
IFFT block, the delete block, and the append block), the algorithm is no longer equivalent to block
LMS block

W(k+1)=W(k)+ pU?(k)E(K) (6)

— The resulting algorithm has a lower complexity (only three FFTs are required).
— The drawbacks:

* when the number of processed blocks increases, the weight vector no longer converges to the
Wiener solution.

* the steady state error of the unconstrained algorithm is increased compared to the fast LMS
algorithm.
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Self-orthogonalizing adaptive filters
The self-orthogonizing adaptive filter was introduced to guarantee a constant convergence rate, not
dependent on the input statistics.
— The updating equation is
w(n+1) = w(n) + aR 'u(n)e(n)

— the step size must satisfy 0 < a < 1 and it was recommended to be selected as
1
- 2M

— Example: for white Gaussian input, with variance o2,

o

R=0%1
and the adaptation becomes the one from the standard LMS algorithm:

wln +1) = wln) + 5 u(n)e(n)

— From the previous example, a two stage procedure can be inferred:

* Step I: Transform the input vector u(n) into a corresponding vector of uncorrelated variables.

« Step II: use the transformed vector into an LMS algorithm

— Consider first as uncorrelating transformation the Karhunen-Loeve transform:

vi(n) = q; u(n), i=0,...,M—1
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where g, is the eigenvector associated with the ¢’th eigenvalue A; of the correlation matrix R of the input
vector u(n).

e The individual outputs of the KLT are uncorrelated:

Evi(n)v;(n) = { g‘ja ? ;2

e The adaptation equation (Step II) becomes
w(n +1) = w(n) + aA™'y(n)e(n)
or written element-wise, for ¢ =0,1,..., M — 1:

wi(n+1) =w;(n) + ;;I/i(n)e(n)

e Replacing the optimal KLT with the (sub)optimal DCT (discrete cosine transform) one obtains the
DCT-LMS algorithm.

e The DCT is performed at each sample (the algorithm is no longer equivalent to a block LMS. Advantage:
better convergence. Disadvantage: not so computationally efficient.



