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Renewal processes are an efficient tool for describing the structure that recovers
after some period of time. One of the most natural applications of such processes
seems to be in reliability theory, which concentrates on the ability of some system to
function without failure. The extensive overview of problems and possible applications
of the renewal theory in this field can be found in [1].

For instance, one might consider an engineering system, e.g., a recording studio,
with parts connected by 𝐾 different independent cables. Each of them is assumed to
fail at random and be replaced immediately upon failure. The behaviour of 𝑘-th cable,
𝑘 = 1, . . . , 𝐾, can then be described by the renewal process
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The common problem arising in this context is determining the number 𝑚 of spare

details necessary to assure functioning of the system up to time 𝑡 ≥ 0 with some
probability 1− 𝛼, 𝛼 ∈ (0, 1). In other words, assuming that the system operates only
if all cables are working, one seeks for the smallest 𝑚 ∈ N such that
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where 𝑁
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𝑡 denotes the number of failures of the 𝑘-th cable occurred before 𝑡, 𝑘 =

1, . . . , 𝐾. For example, if for each 𝑘 = 1, . . . , 𝐾 𝐹 (𝑘) is the exponential distribution
with rate parameter 𝜆𝑘, the minimal number of spare details can be found as the
smallest 𝑚 satisfying

𝑚∑︁
𝑗=0

(︂
𝑡

𝐾∑︀
𝑘=1

𝜆𝑘

)︂𝑗

exp

{︂
−𝑡

𝐾∑︀
𝑘=1

𝜆𝑘

}︂
𝑗!

≥ 𝛼.

Another approach to the determination of the number of replacement components
is to use the analogue of the central limit theorem [2]. Namely, if for a 𝑘-th cable it
is known that the average lifetime is equal to 𝜇 hours and the standard deviation is 𝜎

hours, the minimal number 𝑚 ∈ N of spare details necessary to ensure functioning of
the cable up to time 𝑡 with some probability 1− 𝛼 can be found from
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where 𝑞1−𝛼 is the (1−𝛼)-quantile of the standard normal distribution. More precisely,
we get that the target value is
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Since the replacements are usually associated with some costs, another frequently
encountered problem is choosing a maintenance policy that minimises the expenses.
For instance, one might consider replacing the items before failure, since the latter
typically induces higher costs. Then, if the cost of replacing a failed item is 𝑐𝑓 > 0 and
that of a working item is 𝑐𝑤 < 𝑐𝑓 , both being constant, the aim is to minimise
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of failed and nonfailed items before time 𝑡, respectively. One of possible strategies can
be the so-called block replacement policy, when the items are replaced either at failure
or at deterministic times 𝑏𝑇 , 𝑏 ∈ N, 𝑇 > 0. In this case it is known that
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where 𝑁𝑇 is the number of failures at [0, 𝑇 ]. Then, if the distribution of inter-arrival
times is absolutely continuous, the optimal 𝑇 minimising (1) satisfies
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for more details, see [1].
It should be mentioned that this policy, as well as other preventive measures, can

be effective only if the distribution 𝐹 of inter-arrival times 𝜉1, 𝜉2, . . . has an increasing
failure rate. That is, if 𝐹 is continuous,
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should be increasing in 𝑥 for all ℎ > 0 and 𝑥 ≥ 0 such that 𝐹 (𝑥) < 1, and in case of a
discrete distribution,
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should be non-decreasing in 𝑘, 𝑘 ∈ N∪{0}. In other words, the items should wear out
over time. Otherwise, the optimal decision is to replace items only upon failure. While
this can be the case in many practical instances, it should be noted that the property (2)
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is violated, in particular, for the renewal process with exponentially distributed inter-
arrival times. At the same time, this process turns out to be a very special case of
renewal processes, which can be employed in various problems and will be discussed in
more detail next week.
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