Stochastic Processes Week 0 一些預備知識


Coursera Stochastic Processes 課程筆記, 共十篇:

本篇回顧一些基礎的機率複習, 這些在之後課程裡有用到.
強烈建議閱讀以下文章:

以下回顧開始:


回顧機率知識

  • ex=k=0xkk!. Proof link.

  • Independent of Random Variables

    XYP(XY)=P(X)P(Y)

  • Cov(X,Y)=E[XY]E[X]E[Y]
    [Proof]:

    Cov(X,Y)=E[(Xμx)(Yμy)]=E[XY]μxE[Y]μyE[X]+μxμy=E[XY]μxμy
  • Var(X)=E[X2](E[X])2
    [Proof]:

    Var(X)=Cov(X,X)=E[XX]E[X]E[X]=E[X2](E[X])2
  • X,Y uncorrelated Cov(X,Y)=0E[XY]=E[X]E[Y]
  • XY X,Y uncorrelated E[XY]=E[X]E[Y]

  • Covariance 是線性的: Cov(aX+bY,cZ)=acCov(X,Z)+bcCov(Y,Z)
    [Proof]:

    Cov(aX+bY,cZ)=E[(aX+bY)cZ]E[aX+bY]E[cZ]=acE[XZ]+bcE[YZ]acE[X]E[Z]bcE[Y]E[Z]=ac(E[XZ]E[X]E[Z])+bc(E[YZ]E[Y]E[Z])=acCov(X,Z)+bcCov(Y,Z)
  • [Characteristic Function Def]:
    For random variable ξ, 定義 characteristic function Φ:RC
    Φξ(u)=E[eiuξ]

  • 如果 ξ1ξ2, 則

    Φξ1+ξ2(u)=Φξ1(u)Φξ2(u)

    [Proof]:

    Φξ1+ξ2(u)=E[eiu(ξ1+ξ2)]=E[eiuξ1eiuξ2]=ξ1,ξ2P(ξ1,ξ2)eiuξ1eiuξ2dξ1dξ2=ξ1,ξ2(P(ξ1)eiuξ1)(P(ξ2)eiuξ2)dξ1dξ2=E[eiuξ1]E[eiuξ2]=Φξ1(u)Φξ2(u)
  • E[X+Y]=E[X]+E[Y]. 跟 X,Y 是否獨立或不相關無關.

  • |Cov(X,Y)|Var(X)Var(Y)
    [Proof]:

  • Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)
    [Proof]:

    Var(X+Y)=Cov(X+Y,X+Y)=Cov(X,X)+2Cov(X,Y)+Cov(Y,Y)=Var(X)+Var(Y)+2Cov(X,Y)
  • 如果 X,Y uncorrelated (所以 XY 也成立), 則 Var(X+Y)=Var(X)+Var(Y)

  • Normal distribution of one r.v.

    XN(μ,σ2), for σ>0,μRp(x)=12πσe(xμ)22σ2
  • The characteristic function of normal distribution is:

    Φ(u)=eiuμ12u2σ2
  • 獨立高斯分佈之和仍為高斯分佈, mean and variance 都相加
    [Proof]:

    (X1,...,Xn) where XkN(μk,σ2k),k=1,...,n

    我們知道

    XkN(μk,σ2k)Φk(u)=eiuμk12u2σ2k

    kXkkΦk(u)=eiu(kμk)12u2(kσ2k)

    由特徵方程式與機率分佈一對一對應得知

    kXkN(kμk,kσ2k)
  • K:X×XR is symmetric positive semi-definite:

  • 給定 t1<t2<<tn 一個很有用的技巧為:
    可以變成以下這些 disjoint 區段的線性組合

    (t2t1),...,(tntn1)

    具體如下:

    nk=1λkBtk=λn(BtnBtn1)+(λn+λn1)Btn1+n2k=1λkBtk=nk=1dk(BtnBtn1)

    會想要這樣轉換是因為課程會學到 independent increment 特性, 表明 disjoint 區段的 random variables 之間互相獨立, 因此可以變成互相獨立的 r.v.s 線性相加

  • Calculating Moments with Characteristic Functions (wiki))

  • Brownian Motion reference
    Brownian Motion by Hartmann.pdf

  • Lebesgue Measure and Integration
    A guide to the Lebesgue measure and integration
    Lebesgue integration from wiki
    [測度論] Sigma Algebra 與 Measurable function 簡介

  • Probability Theory
    [機率論] 淺談機率公理 與 基本性質
    Measure theory in probability
    Distribution function F defined with (probability) measure μ (ref)

    F 又稱 cumulative distribution function (c.d.f.), 或稱 cumulative function
    其微分稱為 probability density function (p.d.f.), 或簡稱 density function. 注意到 density 不是 (probability) measure μ!
    而期望值可以用 Lebesgue measure or in probability measure 來看待:
    Given Probability space: (Ω,Σ,P), 期望值定義為

    所有 event ωΣ 的 probability measure P(ω), 乘上該 random variable 的值 X(ω)
    所有 outcome ωΩ 的 probability measure P(dω), 乘上該 random variable 的值 X(ω)

  • Lebesgue’s Dominated Convergence Theorem: Exchanging lim and
    Let (fn) be a sequence of measurable functions on a measure space (S,Σ,μ). Assume (fn) converges pointwise to f and is dominated by some (Lebesgue) integrable function g, i.e.

    |fn(x)|g(x),n,xS

    Then f is (Lebesgue) integrable, i.e. S|f|dμ<
    and

    limnS|fnf|dμ=0limnSfndμ=Slimnfndμ=Sfdμ