Coursera Stochastic Processes 課程筆記, 共十篇:
- Week 0: 一些預備知識 (本文)
- Week 1: Introduction & Renewal processes
- Week 2: Poisson Processes
- Week3: Markov Chains
- Week 4: Gaussian Processes
- Week 5: Stationarity and Linear filters
- Week 6: Ergodicity, differentiability, continuity
- Week 7: Stochastic integration & Itô formula
- Week 8: Lévy processes
- 整理隨機過程的連續性、微分、積分和Brownian Motion
本篇回顧一些基礎的機率複習, 這些在之後課程裡有用到.
強烈建議閱讀以下文章:
- [測度論] Sigma Algebra 與 Measurable function 簡介
- [機率論] 淺談機率公理 與 基本性質
- A guide to the Lebesgue measure and integration
- Measure theory in probability
以下回顧開始:
回顧機率知識
ex=∑∞k=0xkk!. Proof link.
Independent of Random Variables
X⊥Y⟺P(XY)=P(X)P(Y)
Cov(X,Y)=E[XY]−E[X]E[Y]
Cov(X,Y)=E[(X−μx)(Y−μy)]=E[XY]−μxE[Y]−μyE[X]+μxμy=E[XY]−μxμy
[Proof]:Var(X)=E[X2]−(E[X])2
Var(X)=Cov(X,X)=E[XX]−E[X]E[X]=E[X2]−(E[X])2
[Proof]:
- X,Y uncorrelated ⟺Cov(X,Y)=0⟺E[XY]=E[X]E[Y]
X⊥Y⇒ X,Y uncorrelated ⇒E[XY]=E[X]E[Y]
Covariance 是線性的: Cov(aX+bY,cZ)=acCov(X,Z)+bcCov(Y,Z)
Cov(aX+bY,cZ)=E[(aX+bY)cZ]−E[aX+bY]E[cZ]=acE[XZ]+bcE[YZ]−acE[X]E[Z]−bcE[Y]E[Z]=ac(E[XZ]−E[X]E[Z])+bc(E[YZ]−E[Y]E[Z])=acCov(X,Z)+bcCov(Y,Z)
[Proof]:[Characteristic Function Def]:
For random variable ξ, 定義 characteristic function Φ:R→C 為
Φξ(u)=E[eiuξ]如果 ξ1⊥ξ2, 則
Φξ1+ξ2(u)=Φξ1(u)Φξ2(u)[Proof]:
Φξ1+ξ2(u)=E[eiu(ξ1+ξ2)]=E[eiuξ1eiuξ2]=∫ξ1,ξ2P(ξ1,ξ2)eiuξ1eiuξ2dξ1dξ2=∫ξ1,ξ2(P(ξ1)eiuξ1)(P(ξ2)eiuξ2)dξ1dξ2=E[eiuξ1]E[eiuξ2]=Φξ1(u)Φξ2(u)E[X+Y]=E[X]+E[Y]. 跟 X,Y 是否獨立或不相關無關.
|Cov(X,Y)|≤√Var(X)√Var(Y)
[Proof]:Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)
Var(X+Y)=Cov(X+Y,X+Y)=Cov(X,X)+2Cov(X,Y)+Cov(Y,Y)=Var(X)+Var(Y)+2Cov(X,Y)
[Proof]:如果 X,Y uncorrelated (所以 X⊥Y 也成立), 則 Var(X+Y)=Var(X)+Var(Y)
Normal distribution of one r.v.
X∼N(μ,σ2), for σ>0,μ∈Rp(x)=1√2πσe−(x−μ)22σ2The characteristic function of normal distribution is:
Φ(u)=eiuμ−12u2σ2獨立高斯分佈之和仍為高斯分佈, mean and variance 都相加
(X1,...,Xn) where Xk∼N(μk,σ2k),∀k=1,...,n
[Proof]:我們知道
Xk∼N(μk,σ2k)⟷Φk(u)=eiuμk−12u2σ2k則
∑kXk⟷∏kΦk(u)=eiu(∑kμk)−12u2(∑kσ2k)由特徵方程式與機率分佈一對一對應得知
∑kXk∼N(∑kμk,∑kσ2k)
給定 t1<t2<…<tn 一個很有用的技巧為:
(t2−t1),...,(tn−tn−1)
可以變成以下這些 disjoint 區段的線性組合具體如下:
n∑k=1λkBtk=λn(Btn−Btn−1)+(λn+λn−1)Btn−1+n−2∑k=1λkBtk=n∑k=1dk(Btn−Btn−1)會想要這樣轉換是因為課程會學到 independent increment 特性, 表明 disjoint 區段的 random variables 之間互相獨立, 因此可以變成互相獨立的 r.v.s 線性相加
Calculating Moments with Characteristic Functions (wiki))
Brownian Motion reference
Brownian Motion by Hartmann.pdfLebesgue Measure and Integration
A guide to the Lebesgue measure and integration
Lebesgue integration from wiki
[測度論] Sigma Algebra 與 Measurable function 簡介Probability Theory
[機率論] 淺談機率公理 與 基本性質
Measure theory in probability
Distribution function F defined with (probability) measure μ (ref)
F 又稱 cumulative distribution function (c.d.f.), 或稱 cumulative function
其微分稱為 probability density function (p.d.f.), 或簡稱 density function. 注意到 density 不是 (probability) measure μ!
而期望值可以用 Lebesgue measure or in probability measure 來看待:
Given Probability space: (Ω,Σ,P), 期望值定義為所有 event ω∈Σ 的 probability measure P(ω), 乘上該 random variable 的值 X(ω)
所有 outcome ω∈Ω 的 probability measure P(dω), 乘上該 random variable 的值 X(ω)Lebesgue’s Dominated Convergence Theorem: Exchanging lim and ∫
|fn(x)|≤g(x),∀n,∀x∈S
Let (fn) be a sequence of measurable functions on a measure space (S,Σ,μ). Assume (fn) converges pointwise to f and is dominated by some (Lebesgue) integrable function g, i.e.Then f is (Lebesgue) integrable, i.e. ∫S|f|dμ<∞
limn→∞∫S|fn−f|dμ=0limn→∞∫Sfndμ=∫Slimn→∞fndμ=∫Sfdμ
and