棒棒生

讓學習變成一種習慣


  • 首頁

  • 分類

  • 關於

  • 歸檔

  • 標籤

Stochastic Processes Week 8 Lévy processes

發表於 2021-12-12 | 分類於 SP

Coursera Stochastic Processes 課程筆記, 共十篇:

  • Week 0: 一些預備知識
  • Week 1: Introduction & Renewal processes
  • Week 2: Poisson Processes
  • Week3: Markov Chains
  • Week 4: Gaussian Processes
  • Week 5: Stationarity and Linear filters
  • Week 6: Ergodicity, differentiability, continuity
  • Week 7: Stochastic integration & Itô formula
  • Week 8: Lévy processes (本文)
  • 整理隨機過程的連續性、微分、積分和Brownian Motion
閱讀全文 »

Stochastic Processes Week 7 Stochastic integration & Itô formula

發表於 2021-12-12 | 分類於 SP

Coursera Stochastic Processes 課程筆記, 共十篇:

  • Week 0: 一些預備知識
  • Week 1: Introduction & Renewal processes
  • Week 2: Poisson Processes
  • Week3: Markov Chains
  • Week 4: Gaussian Processes
  • Week 5: Stationarity and Linear filters
  • Week 6: Ergodicity, differentiability, continuity
  • Week 7: Stochastic integration & Itô formula (本文)
  • Week 8: Lévy processes
  • 整理隨機過程的連續性、微分、積分和Brownian Motion
閱讀全文 »

Stochastic Processes Week 6 Ergodicity, differentiability, continuity

發表於 2021-12-12 | 分類於 SP

Coursera Stochastic Processes 課程筆記, 共十篇:

  • Week 0: 一些預備知識
  • Week 1: Introduction & Renewal processes
  • Week 2: Poisson Processes
  • Week3: Markov Chains
  • Week 4: Gaussian Processes
  • Week 5: Stationarity and Linear filters
  • Week 6: Ergodicity, differentiability, continuity (本文)
  • Week 7: Stochastic integration & Itô formula
  • Week 8: Lévy processes
  • 整理隨機過程的連續性、微分、積分和Brownian Motion
閱讀全文 »

Stochastic Processes Week 5 Stationarity and Linear filters

發表於 2021-12-12 | 分類於 SP

Coursera Stochastic Processes 課程筆記, 共十篇:

  • Week 0: 一些預備知識
  • Week 1: Introduction & Renewal processes
  • Week 2: Poisson Processes
  • Week3: Markov Chains
  • Week 4: Gaussian Processes
  • Week 5: Stationarity and Linear filters (本文)
  • Week 6: Ergodicity, differentiability, continuity
  • Week 7: Stochastic integration & Itô formula
  • Week 8: Lévy processes
  • 整理隨機過程的連續性、微分、積分和Brownian Motion
閱讀全文 »

Stochastic Processes Week 4 Gaussian Processes

發表於 2021-12-12 | 分類於 SP

Coursera Stochastic Processes 課程筆記, 共十篇:

  • Week 0: 一些預備知識
  • Week 1: Introduction & Renewal processes
  • Week 2: Poisson Processes
  • Week3: Markov Chains
  • Week 4: Gaussian Processes (本文)
  • Week 5: Stationarity and Linear filters
  • Week 6: Ergodicity, differentiability, continuity
  • Week 7: Stochastic integration & Itô formula
  • Week 8: Lévy processes
  • 整理隨機過程的連續性、微分、積分和Brownian Motion
閱讀全文 »

Stochastic Processes Week 3 Markov Chains

發表於 2021-12-12 | 分類於 SP

Coursera Stochastic Processes 課程筆記, 共十篇:

  • Week 0: 一些預備知識
  • Week 1: Introduction & Renewal processes
  • Week 2: Poisson Processes
  • Week3: Markov Chains (本文)
  • Week 4: Gaussian Processes
  • Week 5: Stationarity and Linear filters
  • Week 6: Ergodicity, differentiability, continuity
  • Week 7: Stochastic integration & Itô formula
  • Week 8: Lévy processes
  • 整理隨機過程的連續性、微分、積分和Brownian Motion
閱讀全文 »

Stochastic Processes Week 2 Poisson Processes

發表於 2021-12-12 | 分類於 SP

Coursera Stochastic Processes 課程筆記, 共十篇:

  • Week 0: 一些預備知識
  • Week 1: Introduction & Renewal processes
  • Week 2: Poisson Processes (本文)
  • Week3: Markov Chains
  • Week 4: Gaussian Processes
  • Week 5: Stationarity and Linear filters
  • Week 6: Ergodicity, differentiability, continuity
  • Week 7: Stochastic integration & Itô formula
  • Week 8: Lévy processes
  • 整理隨機過程的連續性、微分、積分和Brownian Motion
閱讀全文 »

Stochastic Processes Week 1 Introduction & Renewal processes

發表於 2021-12-11 | 分類於 SP

Coursera Stochastic Processes 課程筆記, 共十篇:

  • Week 0: 一些預備知識
  • Week 1: Introduction & Renewal processes (本文)
  • Week 2: Poisson Processes
  • Week3: Markov Chains
  • Week 4: Gaussian Processes
  • Week 5: Stationarity and Linear filters
  • Week 6: Ergodicity, differentiability, continuity
  • Week 7: Stochastic integration & Itô formula
  • Week 8: Lévy processes
  • 整理隨機過程的連續性、微分、積分和Brownian Motion
閱讀全文 »

Stochastic Processes Week 0 一些預備知識

發表於 2021-12-11 | 分類於 SP

Coursera Stochastic Processes 課程筆記, 共十篇:

  • Week 0: 一些預備知識 (本文)
  • Week 1: Introduction & Renewal processes
  • Week 2: Poisson Processes
  • Week3: Markov Chains
  • Week 4: Gaussian Processes
  • Week 5: Stationarity and Linear filters
  • Week 6: Ergodicity, differentiability, continuity
  • Week 7: Stochastic integration & Itô formula
  • Week 8: Lévy processes
  • 整理隨機過程的連續性、微分、積分和Brownian Motion

本篇回顧一些基礎的機率複習, 這些在之後課程裡有用到.
強烈建議閱讀以下文章:

  • [測度論] Sigma Algebra 與 Measurable function 簡介
  • [機率論] 淺談機率公理 與 基本性質
  • A guide to the Lebesgue measure and integration
  • Measure theory in probability

以下回顧開始:

閱讀全文 »

MCMC by Gibbs and Metropolis-Hasting Sampling

發表於 2021-10-27 | 分類於 ML

PRML book sampling (chapter 11) 開頭把動機描述得很好, 也引用來當這篇文章的前言.
在用 machine learning 很多時候會遇到需要計算某個 function $f(x)$ 的期望值, 當 $x$ follow 某個 distribution $p(x)$ 的情況, i.e. 需計算

$$\begin{align} \mu:=\mathbb{E}_p[f]=\int f(x)p(x)dx \end{align}$$

例如 EM algorithm 會需要計算 $\mathbb{E}_{p(z|x)}[f(x,z)]$, 參考 ref 的式 (23), (28)
又或者我們要做 Bayesian 的 prediction 時, 參考 ref 的式 (2)

這些情況大部分都無法有 analytical form. 不過如果我們能從給定的 distribution $p(x)$ 取 $L$ 個 sample 的話, 式 (1) 就能如下逼近

$$\begin{align} \mathbb{E}_p[f] \approx \hat f:= \frac{1}{L}\sum_{l=1}^L f(x_l) \end{align}$$
閱讀全文 »
1…456…11
Chih-Sheng Chen

Chih-Sheng Chen

106 文章
5 分類
219 標籤
© 2025 Chih-Sheng Chen
由 Hexo 強力驅動
主題 - NexT.Mist
[object Object] [object Object]